
PROCEEDINGS of  IAM, V.8, N.1, 2019,   pp.62-75 

 

62 

 

SUBCLASS OF MEROMORPHICALLY UNIVALENT FUNCTIONS 

 

P. Thirupathi Reddy 
1
, B. Venkateswarlu 

2
,  S. Sreelakshmi 

3
   

 
1
Department of Mathematics,  Kakatiya Univeristy, 

Warangal- 506 009,  Telangana,  India. 

 
2
 Department of Mathematics,  GITAM University, 

Doddaballapur- 561 203,  Bengaluru North, India. 

 
3
Department of Mathematics, T S W R J  College , 

Elkathurthy - 505 476,   Warangal Urban,  Telangana, India 

 

e-mails: 
1
reddypt2@gmail.com,

2
bvlmaths@gmail.com,

3
sreelakshmisarikonda@gmail.com 

 

Abstract : In this paper, we introduce and study a new subclass   ,A of 

meromorphically univalent functions with alternating coefficients.  We first obtained a 

necessary and sufficient condition for a function to be in the class   ,A . Then we 

investigate the distortion Theorem, Radius of convexity, convex linear combinations  

integral transforms and convoltion properties.Furthermore,we studied neighbourhood 

properties for the class.  
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1. Introduction 

 

Let  A denote the class of functions of the form    

                                n
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                                                                 (1) 

which are analytic in the open unit disk  : , 1E z z E z    and satisfy the  

following usual normalization condition (0) (0) 1 0.f f    We denote by  

S the subclass of  A consisting of functions ( )f z which are all univalent in E.  

A function f A  is a starlike function  by the order  , 0 1   if it satisfy     
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We denote this class with 
*( )S  . 

 

 A function f A  is a convex  function  by the order  , 0 1   if it satisfy              

         
( )

Re 1
( )

zf z

f z


 
  

 
    ( )z E                                                                  (3)   

We denote this class ( )K  . 

 

Let T  denote the class of functions  analytic in E  that are of the form  

                  
2

( ) , 0n

n n
n

f z z a z a



         ( )z E                                                (4) 

 

and let 
* *( ) ( )T T S   , ( ) T ( )C K   .The class 

*( )T   and allied  

classes possess some interesting properties  and have been extensively  

studied by Silverman [9] and others.                                                

Let    denote the class of functions of the form     
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which are analytic and univalent in the punctured unit disk 

  1 0  :    zandCzzE   and which have a simple pole at the orgin with 

residue 1 there. Let s , 
*( )  and ( )k   (0   < 1) denote the subclasses of   

that are univalent, moromorphically starlike of order  and meromorphically convex 

of order  respectively. Analytically (z) of the form (5) is in 
*( )    if and only if 
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Similarly, ( )kf    if and only if, (z) is of the form (5) and satisfies 
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It being understood that if  = 1 then  
z

zf
1

  is the only function which is 
*(1)  

and (1)k . 

 The classes
*( )   and ( )k    have been extensively studied by 

Pommerenke [5], Clunie [3], Royster [7] and others. 

A function     zf  is said to be in the class   ,  if it also satisfy the 

inequality  

         2    Re 2 zfzzfz                                           (8) 

for some  1   and  1   0     and for all Ez  .   

Let A  be the subclass of  which consisting of the form 

                 
2 3

1 2 3

1
( ) ...f z a z a z a z

z
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     ( 0)na                                        (9) 

And let ( , ) ( , )A A        . Motivated by techniques and used similar to 

these of Silverman  [9],Uralegaddi and Gangi [12], Aouf and Darwin [1],Aouf and 

Hossen [2] and Soybaş, Joshi and  Pawar [ 10,11]. 

 The main objective   of this paper is to obtain various interesting properties 

of functions belong to the class   ,A . And also we study some usual properties 

of the geometric function theory such as coefficient inequalities, distortion theorem , 

radius of convexity, convex linear combinations, integral transforms,convolution 

properties and neighbourhood properties  for the class .  

2. Coefficient Inequalities 

In this section we obtain the coefficient inequalities of the function ( )f z  for the 

class ( , )  
.
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Theorem 2.1. Let the function f(z) defined by (5). 

If     
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n

nan                 (10) 

then      ,   zf  

Proof: Let us suppose that the inequality (10) holds true. 

Then we have  
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which implies that       ,zf
. Hence the theorem. 

 

For functions    , A  the converse of the above theorem is also true.  

Theorem 2.2. Let the  function  zf  be defined by (1.9).Then f(z) in    , A  if 

and only if                                                    
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Proof. In view of Theorem 2.1 it suffices to show the only it part.  Suppose that 
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If we choose z to be real and let 
1z we get  
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which is equivalent to 
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Corollary 2.3.  If       ,  Azf   then  
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for n = 1, 2, ….        . Equality holds for the functions of the form  
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 Theorem 2.4. Let the function f (z) defined by 
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 0na  and the function  zg  defined by      
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be in the same class   , A . Then the function h(z) defined by  
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 where    1    0 , 0  1   nnn bac
 
is also in the class   ,A .

 

Proof: Suppose that each of the functions f (z) and g (z) are in the class   ,A .  

Then making use of (11), we see that 
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      1 -+1 1  

 1 ,
     1 0  ,1  0 ;1    

which completes the proof of Theorem . 

3. Distortion  Theorem 

In this section, we prove Distortion Theorem for the class   ,A .
 

Theorem 3.1.If     ,    Azf   then for ,10  rz  
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with equality holds for the function  
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Proof: Suppose that     ,    Azf  . In view of the Thorem 2.2  

we have 
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This gives the right hand side of (15). Also  
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which gives the left hand side of (15). Hence the theorem. 

4. Radius of Convexity 

Theorem 4.1.  If     ,Azf   then f(z) is meromorphically convex of order 

 10  ,     in  , , , 0 rz   where 

 
  

  
....3,2,1,

2 -+1n

1  1

1

 
,,

1
1



















n
n

n

n

fin
r

n




  

The result is sharp for the function f (z) given by  
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Proof: Let      ,   Azf  .  Then by Theorem 2.2, we have  











1

1  
1

1 
   

n

na
n




       (18) 

It is sufficient to show that  
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or equivalently to show that 
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Substituting the series expansion for  zf    and    zfz  
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in the left side of (19), we have  
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This will be bounded by 1   if  
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In view of (18), it follows that (20) is true if  
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Setting    , , rz   in (21) the result follows 

5.  Convex Linear Combinations 

 In this section, we shall prove that the class    ,  A  
is closed under 

convex linear combinations.  

Theorem 6 : Let  
z
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Proof. Let  zf
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Hence the theorem follows. 

6. Integral Transforms                              

In this section, we consider integral transforms of functions in   ,A  
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Theorem 6.1. If f (z) is in   ,A , then the integral transforms  
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Thus (24) will be satisfied if 
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Since the right hand side of (26) is an increasing function of n,  
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putting n=1 in (26), we get  
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The proof of the Theorem is completed. 

7. Convolution Properties 

Robertson [6] has shown that if   
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Now we prove the following results for functions in   ,A .
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Proof: Suppose  zf   and  zg   are in    ,A  

By Theorem 2.2, we have  
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Since  zf   and  zg  are in   ,A , so is   zgf  *  . 
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Further, 
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Hence by Theorem 2.2,   zgf  *   is in the class    ,A .
 

This proves the Theorem.  

8.  Neighborhoods for the class ( , ).A

    . 

 In this section, we determine the neighborhoods for the class ( , )A

    

which we define  as follows: 

Definition8.1. A function f  is said to be in the class ( , )A

     

 if there exists a function    , Ag  such that    
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Following the earlier works on neighborhoods of analytic functions by Goodman [4 

] and Rescheweyh [8 ], we define  the  - neighborhood of a function f  by  
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Proof. Let  gNf   . Then we find from (27) that   
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which implies the coefficient inequality Nnban
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provided    is given by (28).  Hence by definition, ( , )Af     for    given by 

(28) which completes the proof.                                                
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